台灣桃園市建國東路22號 統一編號:84239055 No. 22, Jianguo East Road., Taoyuan City, Taiwan, R.O.C. TEL:+886-3-375-9888 Website: www.FSP-group.com FAX:+886-3-375-6966 Email: sales@fsp-group.com.tw ## **SPECIFICATION** Released Date: 2009/10/28-11:59:43 # **SPECIFICATION** ## FSP300-60GHT,(85)F 9PA300CZ00 **Main Feature:** Meet 2010 EuP **Meet 80 Plus Bronze Active PFC Circuit Full Range Input** > Oct. 26, 2009 **REV:1.03** ### 全漢企業股份有限公司 FSP TECHNOLOGY INC. ### **MODEL:** FSP300-60GHT,(85)F #### **Revision History** | <u>Rev</u> | <u>Description</u> | <u>Date</u> | <u>Author</u> | |------------|--|-------------|---------------| | 1.00 | Initial | 2009/8/24 | | | 1.01 | Revise 4.3. HOLD-UP TIME Revise:1. GENERAL DESCRIPTION AND SCOPE Add:3.5. Standby Power Consumption (5Vsb): & 3.6. Main power backing time ≤ 5 seconds when AC back. | 2009/10/13 | | | 1.02 | Delete \spadesuit Minimum Efficiency for test purposes are considered to be within $\pm 1.0\%$ of nominal. | 2009/10/20 | | | 1.03 | Delete:3.5. Standby Power Consumption (5Vsb):
& 3.6. Main power backing time ≤ 5 seconds when AC back.
ADD:3.4.2 Standby Power Consumption (5Vsb) & 4.9 | 2009/10/26 | | | | | | | 發行時間: 2009/10/28 12:05 下午 文件資料管制 文件資料管制 文件資料管制 #### 1. GENERAL DESCRIPTION AND SCOPE This is the specification of Model <u>FSP300-60GHT</u>,(85)F; AC-line powered switching power supply with active PFC (Power Factor Correction) circuit, meet EN61000-3-2 and with Full Range Input features. Also, 5Vsb power is less than 1W_{input} at power off mode (PS_ON input at high state) which is comply with EuP Lot 6 year 2010 requirement. The specification below is intended to describe as detailedly as possible the functions and performance of the subject power supply. Any comment or additional requirements to this specification from our customers will be highly appreciated and treated as a new target for us to approach. #### 2. REFERENCE DOCUMENTS The subject power supply will meet the EMI requirements and obtain main safety approvals as following: #### 2.1. EMI REGULATORY - FCC Part 15 Subpart J, Class 'B' 115 Vac operation. - CISPR 22 Class 'B' 230 Vac operation. #### 2.2. SAFETY - NEMKO EN 60950-1 - TUV EN 60950-1 - CSA EN 60950-1 - IEC EN 60950-1 - UL EN 60950-1 - CE: EN 55022:1998+A1: 2000, Class B EN 61000-3-2: 2000 EN 61000-3-3: 1995+A1: 2001 EN 60950-1 CISPR22: 1997+A1: 2000, Class B AS/NZS CISPR 22: 2002, Class B 3 #### 3. INPUT ELECTRICAL SPECIFICATIONS #### 3.1. AC INPUT | Parameter | Min. | Nom. ⁽¹⁾ | Max. | Unit | |---------------------------|------|---------------------|------|--------------------| | V _{in} (115VAC) | 90 | 115 | 132 | VAC _{rms} | | V _{in} (230VAC) | 180 | 230 | 264 | VAC _{rms} | | V _{in} Frequency | 47 | | 63 | HZ | lack Nominal voltages for test purposes are considered to be within $\pm 1.0 \text{V}$ of nominal. #### 3.2. INRUSH CURRENT Maximum inrush current from power-on (with power on at any point on the AC sine) and including, but not limited to, three line cycles, shall be limited to a level below the surge rating of the input line cord, AC switch if present, bridge rectifier, fuse, and EMI filter components. Repetitive ON/OFF cycling of the AC input voltage should not damage the power supply or cause the input fuse to blow. #### 3.3. INPUT LINE CURRENT & POWER FACTOR (P.F.) #### (At Full load) | AC input | Input line current | P.F.@ Full Load | P.F.@ Pin=75W | |----------|--------------------|-----------------|---------------| | 115V | < 3.5 Amps – rms | > 0.95 | > 0.8 | | 230V | < 2.0 Amps – rms | > 0.9 | > 0.75 | #### 3.4. EFFICIENCY #### 3.4.1 General Under the load conditions defined in Table 1 and Table 2. The loading condition for testing efficiency shown in Table 1 represents a fully loaded system. $\sim 50\%$ (typical) loaded system. and $\sim 20\%$ (light) loaded system. 發行時間:2009/10/28 12:05 下午 **Table 1. Loading Table for Efficiency Measurements** | | 300W(loading shown in Amps) | | | | | | |---------|-----------------------------|-------|------|-------|------|-------| | Loading | +12V1 | +12V2 | +5V | +3.3V | -12V | +5Vsb | | Full | 8.64 | 9.88 | 8.49 | 7.72 | 0.31 | 1.23 | | Typical | 4.32 | 4.94 | 4.24 | 3.86 | 0.15 | 0.62 | | Light | 1.73 | 1.98 | 1.7 | 1.54 | 0.06 | 0.25 | Table 2. Minimum Efficiency Vs Load | Loading | Voltage | Full load | Typical load | Light load | |-----------------------------|---------|-----------|--------------|------------| | Required Minimum Efficiency | 115V | 82% | 85% | 82% | | Required Minimum Efficiency | 230V | 82% | 85% | 82% | #### 3.4.2 Standby Power Consumption (5Vsb): Input Power < 1W @ 5Vsb/100mA & 230Vac input PS_ON input signal @ High State #### 4. OUTPUT ELECTRICAL REQUIREMENTS #### 4.1. OUTPUT VOLTAGE AND CURRENT RATING | Output | MINIMUM
LOAD | NORMAL
LOAD | MAXIMUM
LOAD | PEAK
LOAD | LOAD
REG. | LINE REG. | RIPPLE & NOISE | |--------|-----------------|----------------|-----------------|--------------|--------------|-----------|----------------| | +3.3V | 0.5A | 10A | 20A | | ±5% | ±1% | 70mV P-P | | +5V | 0.2A | 11A | 22A | | ±5% | ±1% | 70mV P-P | | +12V1 | 0.1A | 7A | 14A | | ±5% | ±1% | 140mV P-P | | +12V2 | 0.5A | 8A | 16A | 19A | ±5% | ±1% | 140mV P-P | | -12V | 0A | 0.25A | 0.5A | | ±10% | ±1% | 140mV P-P | | +5VSB | 0A | 1A | 2A | 2.5A | ±5% | ±1% | 70mV P-P | - (1) +3.3V & +5V total output not exceed 110W. - (2) Total output continuous shall not exceed 300W. - (3) +12V2 peak current is 19A (less then 10m Sec.), minimum voltage during peak is >10.8Vdc. - (4) 5Vsb peak current is 2.5A(less then 500m Sec.), minimum voltage during peak is >4.5Vdc. - (5) Voltages and ripple are measured at the load side of mating connectors with a 0.1 uF monolithic ceramic capacitor paralleled by a 10 uF electrolytic capacitor across the measuring terminals. 5 #### 4.2. LOAD CAPACITY SPECIFICATIONS The cross regulation defined as follows, the voltage regulation limits DC include DC Output ripple & noise. | LOAD | +3.3V | +5V | +12V1 | +12V2 | -12V | +5VSB | |-------------|-------|------|-------|-------|-------|-------| | condition_1 | X | X | X | X | X | 2A | | condition_2 | 0.5A | 0.2A | 0.1A | 0.5A | 0.5A | 0A | | condition_3 | 0.5A | 15A | 2A | 2A | 0.05A | 0.05A | | condition_4 | 0.5A | 2A | 14A | 1A | 0A | 0A | | condition_5 | 0.5A | 2A | 1A | 16A | 0A | 0A | | condition_6 | 16A | 3A | 1A | 1A | 0A | 0A | | condition_7 | 0.5A | 21A | 7.6A | 7.6A | 0.5A | 1A | | condition_8 | 20A | 9A | 7.2A | 7.2A | 0.5A | 2A | | condition_9 | 9.4A | 7.2A | 9A | 9A | 0.5A | 2A | #### 4.3. HOLD-UP TIME (@ 80% loading of Table. 1) 115V / 60Hz : 17 mSec. Minimum. 230V / 50Hz : 17 mSec. Minimum. The output voltage will remain within specification, in the event that the input power is removed or interrupted, for the duration of one cycle of the input frequency. The interruption may occur at any point in the AC voltage cycle. The power good signal shall remain high during this test. #### 4.4. OUTPUT RISE TIME (10% TO 95% OF FINAL OUTPUT VALUE, @FULL LOAD) 115V-rms or 230V-rms + 3.3Vdc : 20ms Maximum + 5Vdc : 20ms Maximum + 12Vdc : 20ms Maximum + 5Vsb : 20ms Maximum - 12Vdc: 20ms Maximum #### 4.5. OVER VOLTAGE PROTECTION | Output | Protection Point | |--------|------------------| | +3.3V | 3.76V - 4.8V | | +5V | 5.6V - 7.0V | | +12V | 13.0V - 16.5V | #### 4.6. OVER CURRENT PROTECTION | Output voltage | Max. over current limit | |----------------|-------------------------| | +3.3V | 60A | | +5V | 48A | | +12V1 | 27A | | +12V2 | 27A | #### 4.7. SHORT CIRCUIT PROTECTION Output short circuit is defined to be a short circuit load of less than 0.1 ohm. In the event of an output short circuit condition on +3.3V, +5V, +12V or-12V output, the power supply will shut down and latch off without damage to the power supply. The power supply shall return to normal operation after the short circuit has been removed and the power switch has been turned off for no more than 2 seconds. #### 4.8. POWER SIGNAL | POV | WER GOOD @115/230V, FULL LOAD | 100 –500mSec. | |-----|-------------------------------|-----------------| | PO | WER FAIL @115/230V, FULL LOAD | 1 mSec. minimum | #### 文件資料管制 文件資料管制 文件資料管制 #### Figure: T1: Power-on time shall be less than 500 ms (T1 < 500 ms). T2: Rise time : 0.1 ms to 20 ms (0.1 ms \leq T2 \leq 20 ms). T3: Power-ok delay time: 100 ms < T3 < 500 ms T4: Power-ok rise time: T4 \leq 10 ms T5 + T6: AC loss to output hold-up time : T5 + T6 \geq 17 ms 4.9. The main power supply shall be off when the PS_ON pin is floating (open collector). The ON/STBY pin of P1 must remain off state for 5 Sec (maximum) prior to switching to the ON state. #### 5. FAN NOISE REQUIREMENTS 5.1. The subject power supply is cooled by a self-contained, 80mm×20mm, 12VDC fan. #### 6. ENVIRONMENTAL REQUIREMENTS The power supply will be compliant with each item in this specification for the following Environmental conditions. #### 6.1. TEMPERATURE RANGE | Operating | +10 to +50 deg. C | |-----------|-------------------| | Storage | -20 to +80 deg. C | #### 6.2. HUMIDITY | Operating | 5 –95% RH, Non-condensing | |-----------|---------------------------| | Storage | 5 –95% RH, Non-condensing | #### 6.3. VIBRATION The subject power supply will withstand the following imposed conditions without experiencing non-recoverable failure or deviation from specified output characteristics. Vibration Operating – Sine wave excited, 0.25 G maximum acceleration, 10-250 Hz swept at one octave / min. Fifteen minute dwell at all resonant points, where resonance is defined as those exciting frequencies at which the device under test experiences excursions two times large than non-resonant excursions. Plane of vibration to be along three mutually perpendicular axes. #### 文件資料管制 文件資料管制 文件資料管制 #### 6.4. GROUND LEAKAGE CURRENT The power supply ground leakage current shall be less than 3.5 mA. #### 6.5. RELIABILITY The power supply reliability when calculated by MIL-HDBK-217; latest revision, are exceed 100,000 hours with all output at maximum load and an ambient temperature of 25°C. #### 6.6. DIELECTRIC STRENGTH Primary to Frame Ground: 1800 Vac for 1 sec. Primary to Secondary: 1800 Vac for 1 sec #### 6.7. INSULATION RESISTANCE Primary to Frame Ground: 20 Meg.ohms Minimum Primary to Secondary: 20 Meg.ohms Minimum #### 7. LABELLING Label marking will be permanent, legible and complied with all agency requirements. #### 7.1. MODEL NUMBER LABEL Labels will be affixed to the sides of the power supply showing the following: - Manufacturer's name and logo. - Model no., serial no., revision level, location of manufacturer. - The total power output and the maximum load for each output. - AC input rating. #### 8. MECHANICAL SPECIFICATIONS The mechanical drawing of the subject power supply, which indicate the form factor, location of the mounting holes, location, the length of the connectors, and other physical specifications of the subject power supply. Please refer to the attachment drawing. 9