APPENDIX C: Performance values in accordance to 2006 IBC

TRUBOLT WEDGE ANCHOR DESIGN INFORMATION

Chavastavistis	Cumbol	Unite	Nominal An 1/2"		nal Anchor D	Anchor Diameter inch (mm)		
Characteristic	Symbol	Units			2"		5/8"	
Installation Information								
Effective embedment depth	h _{ef}	in (mm)	2	2	3-1	1/4	2-3/4	4-1/4
Minimum slab thickness	h _{min}	in (mm)	4 (102)	6 (152)	6 (152)	8 (203)	6 (152)	8 (203)
Critcial edge distance	с ас	in (mm)	6 (152)	6 (152)	7-1/2 (190)	6 (152)	6-3/4 (171)	7-1/2 (190)
Minimum edge distance	c min	in (mm)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	5 (127)
Minimum anchor spacing	s _{min}	in (mm)	6 (152)	5-3/4 (146)	4 (102)	5-3/4 (146)	7-1/2 (190)	6 (152)
		Anchor Data						
Anchor category	1, 2 or 3	_				1		
Minimum specified yield strength	fy	lb/in ² (N/mm ²)	55,000 (379)					
Minimum specified ultimate strength	futa	lb/in ² (N/mm ²)	75,000 (517)					
Effective tensile stress area	A _{se}	in ² (mm ²)	0.142 (91.5) 0.226 (145.6)					
Shear strength	Vs	lb (kN)	5,175 (23.02) 9,490 (42.2)					
Effectiveness factor for uncracked concrete	k _{uncr}	_	24					
Effectiveness factor for cracked concrete	k _{cr}		17					
k _{uncr} /k _{cr}	_	_			1.	41		
Pullout strength, uncracked concrete	N _{p,uncr}	lb (kN)	k=	=24	6,540	(29.1)	5,430 (24.2)	8,905 (40.0)
Tension resistance of single anchor for seismic loads	N _{p,eq}	lb (kN)	k=	=17	k=	:17	k=17	6,720 (29.9)
Shear resistance of single anchor for seismic loads	V _{seis}	lb (kN)	5,175 (23.02) 9,490 (42.2)			(42.2)		
Strength reduction factor ϕ for tension, steel failure modes					0.	75		
Strength reduction factor ϕ for shear, steel failure modes			0.65					
Strength reduction factor φ for tension, concrete failure modes, Condition B			0.65					
Strength reduction factor ϕ for shear, concrete failure modes, Condition B				0.70				

For SI: 1 inch =25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa, For pound-inch units: 1 mm = 0.03937 inches

All anchors are classified as ductile in accordance with D1 of ACI 318.

TRUBOLT + WEDGE INSTALLATION INFORMATION

	Symbol	Units						
Anchor outer diameter	d ₀	in (mm)	1/2 (12.7)			5/8 (15.9)		
Nominal carbide bit diameter	d _{bit}	in (mm)	1/2 (12.7)		5/8 (15.9)			
Effective embedment depth	h _{ef}	in (mm)	2 (51) 3-1/4 (83)		2-3/4 (70)	4-1/4 (108)		
Anchor embedment depth	h _{nom}	in (mm)	2-1/2 (64)		3-3/4 (95)		3-1/4 (83)	4-3/4 (121)
Minimum slab thickness	h _{min}	in (mm)	4 (102)	6 (152)	6 (152)	8 (203)	6 (152)	8 (203)
Installation torque	T _{inst}	ft-lb (N-m)	45 (61)			90 (121)	
Reference hole diameter	dh	in (mm)	9/16 (14)			11/1	6 (17)	

TRUBOLT+ WEDGE ANCHOR ALLOWABLE STATIC TENSION (ASD), NORMAL-WEIGHT UNCRACKED CONCRETE (POUNDS)¹⁻⁵

Nominal Anchor	Effective	Concrete Compressive Strength				
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f′c = 3,000 psi	f′c = 4,000 psi		
1/2	2	1,490	1,630	1,885		
	3-1/4	2,870	3,145	3,635		
5/8	2-3/4	2,385	2,610	3,015		
	4-1/4	3,910	4,285	4,945		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

¹ Single anchor with static tension load only.

² Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Assumed thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48

⁵ Values do not include edge distance or spacing reductions.

APPENDIX C: Performance values in accordance to 2006 IBC

TRUBOLT + WEDGE ANCHOR ALLOWABLE STATIC TENSION (ASD), NORMAL-WEIGHT CRACKED CONCRETE (POUNDS) 1-5

Nominal Anchor	Effective Embedment Depth (in.)	Concrete Compressive Strength				
Diameter (in.)		f′c = 2,500 psi	f′c = 3,000 psi	f′c = 4,000 psi		
1/2	2	1,055	1,155	1,335		
	3-1/4	2,190	2,395	2,765		
5/8	2-3/4	1,700	1,865	2,155		
	4-1/4	2,950	3,235	3,735		
TRUBOLT+ WEDGE ANCHOR ALLOWABLE STATIC SHEAR (ASD), STEEL (POUNDS) ¹⁻⁶						
Nominal Anchor Diameter (in.)	Allowable Steel Capacity, Static Shear					
1/2	2,445					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

¹ Single anchor with static tension or shear load only.

5/8

² Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Assumed thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

4,490

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48

⁵ Values do not include edge distance or spacing reductions.

⁶ Static shear values pertain to cracked and uncracked concrete.

TRUBOLT + WEDGE ANCHOR ALLOWABLE SEISMIC TENSION (ASD), NORMAL-WEIGHT CRACKED CONCRETE (POUNDS) 1-5

Nominal Anchor	Effective	Concrete Compressive Strength				
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f′c = 3,000 psi	f'c = 4,000 psi		
1/2	2	905	990	1,145		
1/2	3-1/4	1,880	2,055	2,370		
5/8	2-3/4	1,460	1,600	1,850		
	4-1/4	2,530	2,775	4,145		
TRUBOLT . WEDGE ANCHOR ALLOWABLE SEISMIC SHEAR (ASD), STEEL (POUNDS) ¹⁻⁵						
Nominal Anchor Diameter (in.)	Allowable Steel Capacity, Seismic Shear					
1/2	2,095					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

5/8

¹ Single anchor with seismic tension or shear load only.

⁴ Values include 0.75 factor for regions of moderate to high seismic risk (per ACI 318 D.3.3.3)
⁵ Values do not include edge distance or spacing reductions.

² Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1
³ Assumed 50% dead load and 50% seismic (earthquake) load, controlling load combinations:

3,850

Strength Design = 1.2D + 1.0E and Allowable Stress Design = 1.0D + 0.7E (see Illustrative Procedure)

ILLUSTRATIVE PROCEDURE TO CALCULATE ALLOWABLE STRESS DESIGN SEISMIC TENSION VALUE: RED HEAD TRUBOLT+ WEDGE ANCHOR 1/2 INCH DIAMETER USING AN EFFECTIVE EMBEDMENT OF 3-1/4 INCHES

STEPS	PROCEDURE	CALCULATION
Step 1	Calculate steel strength in tension per ACI 318 D5.1.2	= φ f _{uta} A _{se} = 0.75 * 75,000 * 0.142 = 7,988 lbs
Step 2	Calculate concrete breakout strength in tension Per ACI 318 D5.2.2	= $\phi \kappa_{uncr}$ sqrt (concrete strength) $h_{ef}^{1.5}$ = 0.65 * 17 * sqrt(2,500) * 3.25 ^{1.5} = 3,240 lbs
Step 3	Calculate pullout strength in tension per ACI D5.3.2	Does not control
Step 4	Calculate controlling strength in tension per ACI D4.1.2 Multiple strength by 0.75 (per ACI 318 D.3.3.3) for regions of moderate to high seismic risk	= 3,240 lbs (concrete strength) = 3,240 * 0.75 = 2,430 lbs
Step 5	Calculate conversion factor to convert from Strength Design to Allowable Stress Design • Assume 50% dead load and 50% seismic (earthquake) load	For Strength Design = $1.2D + 1.0E$ = $1.2 \times 0.5 + 1.0 \times 0.5 = 1.1$ For Allowable Stress Design = $1.0D + 0.7E$ = $1.0 \times 0.5 + 0.7 \times 0.5 = 0.85$ Conversion factor = $1.1/0.85 = 1.294$
Step 6	Divide controlling strength by conversion factor	= 2,430 lbs/1.294 = 1,880 lbs

